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By using the transfer matrix approach, we investigate the asymptotic behavior of the entropy of flexible
chains with M monomers each placed on strips with periodic boundary conditions �cylinders�. In the limit of
high density of monomers, we study the behavior of the entropy as a function of the density of monomers and
the width of the strip, inspired by recent analytical studies of this problem for the particular case of dimers
�M =2�. We obtain the entropy in the asymptotic regime of high densities for chains with M =2, . . . ,9 mono-
mers, as well as for the special case of polymers, where M→�, and find that the results show a regular
behavior similar to the one found analytically for dimers. We also verify that in the low-density limit the
mean-field expression for the entropy is followed by the results from our transfer matrix calculations.
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I. INTRODUCTION

In the 1930s, the dimer model was introduced to mimic
the adsorption of diatomic molecules on a crystal surface �1�.
Later, this model was applied in the study of many other
physical systems such as ferroelectric and ferromagnetic ma-
terials �2–6�. The dimers can be modeled as chains with two
basic units called monomers, occupying first neighbor sites
of a lattice. A central question in the study of this model is to
enumerate the number of ways to place p dimers on lattice
with N sites, such that the density of monomers is given by
�=2p /N. The special case of full occupancy, where �=1,
was exactly solved for planar lattices using a technique based
on pfaffians �7–9�. However, the more general case ��1, the
so-called monomer-dimer problem, is still an open question.
Recently, an analytic solution was obtained for the case
where there is a single vacancy at a certain site on the bound-
ary of a two-dimensional lattice �10,11�.

On the other hand, in a previous work, two of us used the
transfer matrix approach to calculate the entropy of flexible
chains with M monomers, that we call M-mers, as a function
of the density � of sites of the lattice occupied by monomers
�12�. Since only the infinite energy related to the excluded
volume interaction is considered, this is an athermal prob-
lem. The entropy was calculated through a numerically exact
procedure for the model defined on strips of finite widths n
and infinite length, with periodical boundary conditions in
the transverse direction, which may be viewed as cylinders
of perimeter n. The sequence of results for strips of finite
widths was then extrapolated to the two-dimensional limit by
means of finite-size scaling procedures.

By using computational methods and the asymptotic
theory of Pemantle and Wilson �13�, Kong �14–16� obtained,
among other results, exact asymptotic expansions for the en-

tropy of the dimers placed on cylinders in the high density
region. It may be appropriate to mention that the free energy
f��� defined by Kong is actually the dimensionless entropy
per lattice site s���=S��� / �NkB�, which is related to the
Helmholtz free energy of the system through

s��� = −
F���
NkBT

, �1�

where kB is the Boltzmann constant and we have set the
constant internal energy of the system equal to zero. He ob-
served that the amplitude of the first term in this expansion
depends on the parity of the cylinder perimeter n,

sn��� � sn�1� − ��1 − ��ln�1 − �� , �2�

where

� = �1 if n is odd,

1

2
if n is even.

The asymptotic behavior of the free energy in the low den-
sity limit �→0 was also studied by Kong in the monomer-
dimer problem �14�.

It is of interest to consider how the asymptotic results
found by Kong are generalized if chains with more than two
monomers are considered. In this work, using the transfer
matrix approach to calculate the entropy for finite cylinders
with perimeter n, we obtain estimates for the amplitude � not
only for the dimer case, but also for larger chains
M =3,4 , . . . ,9. We find that in general expression �2� de-
scribes well the behavior of s��� in the high density limit, but
the number of different values of the amplitude, as well as
their numerical values, change as chains with different mo-
lecular weights M are considered. Also, we study the low
density limit for the same values of M mentioned before.
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This paper is organized as follows. In Sec. II we present
the expressions used to estimate the amplitudes � and we
discuss how the transfer matrix for the problem is defined
and obtained. The numerical results may be found in Sec. III
and the conclusions are presented in Sec. IV.

II. USEFUL EXPRESSIONS, DEFINITION OF THE
TRANSFER MATRIX, AND ITS CONSTRUCTION

Although it is rather natural to study the system in the
canonical ensemble, where the number of monomers on the
lattice is fixed, to apply the transfer matrix technique it is
convenient to allow this number to fluctuate. We thus define
the grand-canonical partition function as

��z� = �
p

zpM��M,N,p� , �3�

where z is the activity of a monomer and ��M ,N , p� is the
number of ways to place p chains with M monomers each on
the lattice with N sites. The density of monomers may be
written as

��z� = z
d

dz
	�z� , �4�

where 	�z� is the thermodynamic potential per lattice site,
defined as

	�z� = lim
N→�

1

N
ln ��z� . �5�

In the thermodynamic limit we may use a Legendre trans-
formation to rewrite the potential as

	�z� � max
�

�� ln z + s���	 , �6�

which implies that

ds

d�
= − ln z ,

and therefore the entropy will be given by

s��� = − 

0

�

ln z����d��, �7�

with s�0�=0.
Now, we may attempt to generalize the high density ex-

pansion for dimers and suppose that the behavior of the en-
tropy in this region is given by the expression

sn��� − sn�1�
�1 − ��

= An − �n ln�1 − �� , �8�

thus, using Eq. �7� we obtain



�

1

ln zn����d�� = An�1 − �� − �n�1 − ��ln�1 − �� . �9�

Differentiating this last equation with respect to �, we have

ln zn = Cn − �n ln�1 − �� , �10�

where Cn=An−�n. This expression was useful to obtain evi-
dence that for all cases we studied the asymptotic behavior

supposed in Eq. �8� is valid, allowing us to estimate the
amplitudes �n.

Transfer matrix

To build the transfer matrix for this problem we define a
strip of width n on the square lattice in the plane �x ,y�, so
that 1
x
n and −� 
y
�. The position of a site may be
defined by �x ,y�, where 1
x
n and y are integer numbers.
Periodic boundary conditions are assumed in both directions.
Generalizing the prescription due to Derrida �17� for the
transfer matrix of an infinite chain placed on cylinders, we
define the state of a set of n vertical bonds of the lattice
connecting the sites at y0−1 to the sites at y0 specifying the
number of monomers already connected to this bond located
on sites with y�y0 �in the range �0,M −1�� and the pairs of
bonds which are connected to each other by a chain whose
monomers are all located at sites with y�y0. This last infor-
mation is essential to prevent the presence of rings in the
allowed configurations. With the information above about
the configuration of the vertical bonds located between
y0−1 and y0, we may find all possible configurations of the
vertical bonds between y0 and y0+1, thus defining a transfer
matrix. Actually, it is not difficult to develop an algorithm for
the steps involved in this procedure, which allows us to ob-
tain the elements of the transfer matrix exactly. Restrictions
in memory and computer time set an upper limit to the val-
ues of n and M we are able to handle, since the size of the
transfer matrix grows very fast as they increase. More details
about this procedure may be found in the previous paper
�12�.

Once the transfer matrix T is obtained, we may find the
entropy in the thermodynamic limit using the largest eigen-
value of this matrix �. The grand-canonical partition function
is related to the transfer matrix by the expression

��z� = Tr�T�� , �11�

where � is the length of the strip and we adopt periodical
boundary conditions in the longitudinal direction as well.
The density of monomers in the thermodynamic limit
�→�, ��z�, will then be given by

��z� = lim
N→�

z

N

d

dz
ln ��z� =

z

n

d

dz
ln � , �12�

where � is the largest eigenvalue of the transfer matrix T and
N=n�. Thus using expressions �10� and �12� and supposing
that the behavior in the high density limit of the entropy for
chains with M monomers is given by the relation �8�, we
may estimate the amplitudes � for the set the molecular
weights M, and perimeters of the cylinders n we were able to
handle.

III. NUMERICAL RESULTS

A roughly exponential growth of the size of the transfer
matrix with both the molecular weight M and the width of
the strip n prevents us from obtaining results for larger
chains or cylinders. In this paper we show results for chains
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with molecular weight ranging between 2 and 9 and widths
of the strips ranging between 2 and 12 �dimers case� and
2 �M =9 case�. First, we analyze the high density limit be-
havior of the entropy for the molecular weights and widths
of the strips mentioned. Later, we will turn our attention to
the low density limit for the same cases. For each pair of
values for n and M, we obtain the elements of the transfer
matrix using the algorithm mentioned above in a numerically
exact fashion. Then, we take advantage of the Cn symmetry
of the states and use the power method to find the largest
eigenvalue of the matrix � and its derivative with respect to
z.

A. High density limit

We start with our results for dimers, which are in agree-
ment with the values obtained by Kong �15,16�, with �=1, if
n is odd and �=1/2, if n is even, as is shown in Fig. 1.

For chains with M =3 �trimers�, our results also lead to
two values of the amplitude: �=1/3 for widths that are mul-
tiples of 3 and �=1 otherwise. Our results for M =4 �tetram-
ers� show three values for the amplitude �,

� =�
1 if n is odd,

1

2
if n is a multiple of 2, but not of 4,

1

4
otherwise.

Finally, in the case M =5 �pentamers�, we found �=1/5 if n
is a multiple of 5 and �=1 in all other cases. Unfortunately,
in this case we only were able to consider widths up to
n=5 due to computational limitations caused by the fast
growth of the transfer matrix with n. All these results are
summarized in Fig. 2.

In our calculations, numerical errors set an upper limit to
the densities we may consider. As we approach the full oc-

cupancy limit �→1, the values of the activity z become very
large and this makes the numerical errors in the calculations
grow. Finally, we extend our analysis to the polymer case
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FIG. 1. �Color online� Results for the amplitude � for dimers
�M =2�. At the left panel the widths of the strips are even values
ranging between n=2 and 12, while at the right panel results for
odd values of the widths between n=3 and 11 are displayed. The
dashed lines indicate slopes equal to the known value of � in each
case.
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FIG. 2. �Color online� Plots which lead to the estimated values
of the amplitude � for M =3,4 and M =5. Top: Results for trimers
�M =3�, with widths ranging between n=2 and 10. In this case for
widths that are multiples of three we find �=1/3 for all other
widths the results lead to �=1. Only the extreme widths n in each
case are labeled. Middle: Case M =4, for widths in the range
n=2–8. In this case three values of the amplitude are found. For
widths which are even but not multiples of 4, �=1/2. If n is odd
�=1 and �=1/4 in all other cases. Bottom: Data for M =5, with
n=2–5. Again, two values for � are found. If n is a multiple of five,
then �=1/5 and �=1 for the other cases. The dashed lines are
drawn with the conjectured slope � for each case.
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�M→ � �. As was shown in �12�, the entropy for this case
displays different finite size scaling corrections for even and
odd widths. Nevertheless, the data show a single amplitude
�=1 in this limit, as may be seen in Fig. 3.

We may conclude that the results shown above suggest
that the dependence of the entropy with the width of the strip
close to the full occupancy limit obtained by Kong for the
dimer model may be extended for larger chains, including
more possibilities for the amplitude �. Apparently, the values
of the amplitude are related to the split of the leading eigen-
values of the transfer matrix into subsets with different finite
size scaling behaviors found in �12�. These splits seem to be
related to frustration effects in the limit of full occupancy. An
empirical rule that we found to label these subsets is the
determination of the integer � which satisfies the relation

�n = kM , �13�

where k is the smallest integer for which a solution is found.
The widths associated to the same value of � share the same
estimate of the amplitude, as may be seen in Table I. Another
way to look at relation �13� is to rewrite it as � /k=M /n, so
that � is the numerator of the fraction M /n after it is simpli-
fied. We notice that � may be interpreted as the length of the
smallest rectangle of width n which may be totally filled by
chains with M monomers each. The number of chains we can
place in this rectangle is k. We notice that if M is prime, we
find �=M for all widths n which are not multiples of M,
while �=1 if n is a multiple of M. In general, the number of
different values for � is equal to the number of divisors of
M, including 1 and M itself.

Our results suggest that the amplitude � is related to the
integer � by the simple relation

� =
�

M
, �14�

which is obeyed by all numerical results presented here.
However, we have no physical or mathematical argument to
justify this hypothesis. Nevertheless, the numerical evidence
supports this relation. If we suppose that the polymer limit
M→� is approached by a sequence of prime values of M,
then we would conclude that �=M in this limit, which is

consistent with the observed amplitude �=1.
In order to test the conjecture above for the amplitude of

the high density limit asymptotic form of the entropy, we
extended the transfer matrix calculations to higher values of
the molecular weight M, although with increasing values of
M we are restricted to decreasing maximum widths n. As
may be seen in Fig. 4, all results for chains with molecular
weights M =6–9 are consistent with the conjecture for the
amplitudes �. There are cases, like M =6, n=3, where nu-
merical errors prevented us from obtaining results at densi-
ties high enough to observe the asymptotic behavior. An ex-
ample where the asymptotic regime also was reached only at
very high densities may be seen in results for M =3, n=9 in
Fig. 2. As a consequence of these limitations, only some of
the possible values for the amplitude � are observed in the
results for chains with larger molecular weight presented in
Fig. 4.

B. Low density limit

In the low density limit �→0, Kong �14� obtained from
an asymptotic expansion the following behavior for the en-
tropy of dimers placed in a strip with width n,

sn��� � −
�

2
ln � + O��� . �15�

The expression above resembles the one predicted by the
mean-field approximation �18,19�, which is

s��� = − �1 − ��ln�1 − �� −
�

M
ln�2�

M
� + �1 −

1

M
��ln q − 1� ,

�16�

TABLE I. Values for the integer �, which satisfies the relation
�13� for some widths and molecular weights.

M n � k M n � k M n � k M n � k

2 2 1 1 3 2 3 2 4 2 2 1 5 2 5 2

3 2 3 3 1 1 3 4 3 3 5 3

4 1 2 4 3 4 4 1 1 4 5 4

5 2 5 5 3 5 5 4 5 5 1 1

6 1 3 6 1 2 6 2 3 6 5 6

7 2 7 7 3 7 7 4 7 7 5 7

8 1 4 8 3 8 8 1 2 8 5 8

9 2 9 9 1 3 9 4 9 9 5 9


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 2 3 1 7 2 7 2 8 2 4 1 9 2 9 2

3 2 1 3 7 3 3 8 3 3 3 1

4 3 2 4 7 4 4 2 1 4 9 4

5 6 5 5 7 5 5 8 5 5 9 5

6 1 1 6 7 6 6 4 3 6 3 2

7 6 7 7 1 1 7 8 7 7 9 7

8 3 4 8 7 8 8 1 1 8 9 8

9 2 3 9 7 9 9 8 7 9 1 1
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FIG. 3. �Color online� Polymer case �M→ � � in which only one
amplitude �=1 was found for all widths studied �n=2,3 , . . . ,9�.
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where q is the coordination number. For small values of the
density �, the leading contribution comes from the second
term, which for dimers is identical to the one obtained by
Kong.

It is then rather natural to conjecture that for other values
of M the leading contribution to the entropy is the one pre-
dicted by the mean-field approximation, since for small den-
sities the interchain interactions may be neglected. Thus we
conjecture that for all values of the molecular weights in the
low density limit we have the asymptotic behavior

s��� � −
�

M
ln�2�

M
� . �17�

In order to test expression �17� in the low density limit,
we built curves for different molecular weights and widths of
strips. Our results, as shown in Fig. 5, are consistent with the
conjecture for all the chains analyzed here, since curves of
Ms��� /� as a function of ln�2� /M� are linear with a slope
equal to 1 in all cases.

IV. CONCLUSIONS

In this work, we study the asymptotic behavior of the
entropy for chains placed on strips using the transfer matrix
approach. Generalizing the results by Kong �14–16� for the
case of dimers in the high density limit, we conjecture simi-
lar asymptotic forms for the entropy of chains with larger
molecular weights. We propose an empirical rule to deter-
mine the number of different amplitudes of the asymptotic
behavior close to the full occupancy limit, as well as to find
the values of these amplitudes. Unfortunately, computational
limitations prevent us from studying larger chains and larger
widths. However, it seems reasonable to expect that our re-
sults apply also to other cases. An analytic approach similar
to the one made by Kong �15,16�, using the Pemantle-Wilson
asymptotic theory �13� would be very useful to support
our conclusions. However, it may not be easy to carry
out this task for chains with molecular weight larger than
M =2.

Another interesting result is that in the low density limit
the free energy is well-fitted by the mean-field approximation
�18,19� for any width n for all the values of M we were able
to consider. Again, it would be interesting to obtain an exact
result in this limit in order to verify this conclusion.

The asymptotic behaviors found by Kong for dimers and
conjectured here for larger chains, besides their intrinsic im-
portance, may be helpful to guide studies using other tech-
niques, such as numerical simulations. It may be remarked
that, particularly in the high density region, simulations may
be difficult due to high relaxation times, as may be seen, for
example, in a recent study of rigid chains by Ghosh and Dhar
�20�.
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FIG. 4. �Color online� Results for the entropy

in the high density limit for chains with molecu-
lar weight M between 6 and 9, in increasing val-
ues from left to right. The observed values of the
amplitudes are consistent with the conjecture
made in the text.
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FIG. 5. �Color online� Results for the low density limit with M
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=1 �indi-
cated by the dashed line�, satisfying the mean-field prediction.

ASYMPTOTIC BEHAVIOR OF THE ENTROPY OF CHAINS… PHYSICAL REVIEW E 76, 031133 �2007�

031133-5



�1� R. H. Fowler and G. S. Rushbrooke, Trans. Faraday Soc. 33,
1272 �1937�.

�2� P. W. Kasteleyn, J. Math. Phys. 4, 287 �1963�.
�3� M. E. Fisher, J. Math. Phys. 7, 1776 �1966�.
�4� C. Fan and F. Wu, Phys. Rev. B 2, 723 �1970�.
�5� S. R. Salinas and J. F. Nagle, Phys. Rev. B 9, 4920 �1974�.
�6� J. F. Nagle, C. S. O. Yokoi, and S. M. Battacharjee, in Phase

Transitions and Critical Phenomena, edited by C. Domb and J.
Lebowitz �Academic Press, New York, 1989�, Vol. 13.

�7� M. E. Fisher, Phys. Rev. 124, 1664 �1961�.
�8� P. W. Kasteleyn, Physica �Amsterdam� 27, 1209 �1961�.
�9� H. N. V. Temperley and M. E. Fisher, Philos. Mag. 6, 1061

�1961�.
�10� W. J. Tzeng and F. Y. Wu, J. Stat. Phys. 110, 671 �2003�.

�11� F. Y. Wu, Phys. Rev. E 74, 020104�R� �2006�; 74, 039907�E�
�2006�.

�12� W. G. Dantas and J. F. Stilck, Phys. Rev. E 67, 031803 �2003�.
�13� R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. A 97,

129 �2002�.
�14� Y. Kong, Phys. Rev. E 75, 051123 �2007�.
�15� Y. Kong, Phys. Rev. E 74, 011102 �2006�.
�16� Y. Kong, Phys. Rev. E 74, 061102 �2006�.
�17� B. Derrida, J. Phys. A 14, L5 �1981�.
�18� P. J. Flory, Principles of Polymer Chemistry �Cornell Univer-

sity Press, Ithaca, 1953�.
�19� J. F. Stilck and M. J. de Oliveira, Phys. Rev. A 42, 5955

�1990�.
�20� A. Ghosh and D. Dhar, Europhys. Lett. 78, 20003 �2007�.

DANTAS, DE OLIVEIRA, AND STILCK PHYSICAL REVIEW E 76, 031133 �2007�

031133-6


